COMPOSITIONAL MEASURES

Fred Landman

Tel Aviv University
June 2022

Boolean background

\triangleright Boolean algebra:
The interpretation domain \mathbf{B} is a complete Boolean algebra $\mathbf{B}=\langle\mathrm{B}, ~ ᄃ, ~ \neg, ~ \sqcap, ~ \sqcup, ~ 0,1\rangle$. $\triangleright \mathrm{X}^{+}=\mathrm{X}-\{0\}$
\triangleright Disjointness: X overlaps iff for some $\mathrm{d}_{1}, \mathrm{~d}_{2} \in \mathrm{X}: \mathrm{d}_{1} \sqcap \mathrm{~d}_{2} \in \mathrm{X}^{+}$; otherwise X is disjoint.
\triangleright Semantic plurality as closure under sum: $* \mathrm{X}=\{\mathrm{d} \in \mathrm{B}$: for some $\mathrm{Z} \subseteq \mathrm{X}: \mathrm{d}=\mathrm{LZ}\}$
\triangleright Definiteness operator as presuppositional sum: $\sigma(\mathrm{X})=\sqcup \mathrm{X}$ if $\sqcup \mathrm{X} \in \mathrm{X}, \perp$ otherwise.
\triangle Part set: $\quad(\mathrm{d} \mathbf{]}=\{\mathrm{b} \in \mathrm{B}: \mathrm{b} \sqsubseteq \mathrm{d}\}$
\triangleright Cardinality $\quad[|(\mathrm{d}] \cap \mathrm{X}| \quad$ if $\mathrm{d} \in * \mathrm{X}$ and X is disjoint
$\operatorname{card}_{X}(\mathrm{~d})= \begin{cases}\perp & \\ \perp & \text { otherwise }\end{cases}$
\triangleright The set of X-atoms: ATOM x is the set of minimal elements in X^{+}.
The set of X-atomic parts of d : $\mathrm{ATOM}_{\mathrm{X}, \mathrm{d}}=\left(\mathrm{d} \mathbf{]} \cap \mathrm{ATOM}_{\mathrm{X}}\right.$
X is atomic iff for every $\mathrm{d} \in \mathrm{X}^{+}:$ATOM $_{\mathrm{X}, \mathrm{d}} \neq \varnothing$
X is atomistic iff for every $\mathrm{d} \in \mathrm{X}^{+}: \mathrm{d}=\mathrm{U}\left(\mathrm{ATOM}_{\mathrm{X}, \mathrm{d}}\right)$
\triangle Additive measure functions
\mathbb{R}^{+}is the set of real numbers from 0 up, W is the set of possible worlds.
A additive measure function is a function $\mu: \mathrm{B} \times \mathrm{W} \rightarrow \mathbb{R}^{+}$such that
for all $\mathrm{w} \in \mathrm{W}: \mu_{\mathrm{w}}(0)=0$ and for every countable disjoint subset X of B :

$$
\mu_{\mathrm{w}}(\sqcup \mathrm{X})=\Sigma\left\{\mu_{\mathrm{w}}(\mathrm{x}): \mathrm{x} \in \mathrm{X}\right\}
$$

(We will also call μ_{w} an additive measure function)

1. COUNTING

View implicit in a lot of thinking about the mass-count distinction, explicitly defended in Rothstein 2017:
$\triangle \mathbf{M C}_{1}: \quad$ There is a mass domain and there is a count domain, and they are disjoint.
$\mathbf{M C}_{2}$: Mass nouns are interpreted in the mass domain, count nouns in the count domain.
COUNT: Counting takes place in the count domain, but not in the mass domain.
MEAS: Measuring takes place in the mass domain, but not in the count domain.
MC1, MC2, COUNT: e.g. Link 1983, Landman 1991, Rothstein 2017
MEAS: Rothstein 2017
This talk is about MEAS

Problem with COUNT: A lot more counting takes place in the mass domain (or with mass noun denotations) than we (or some of us) used to think 40 years ago.

Unproblematic: grammatical shift between mass to count.
Shifted nouns pattern with the grammatical category they shift into:
Singular count noun pig in (1) is shifted to a mass noun and mass noun beer is shifted to a count noun:
(1) In the Bierhalle, Heinz ate much pig and drank many beers.

Problematic: Neat mass nouns like livestock, pottery, mail are mass nouns, but pattern with count nouns rather than mass nouns on several tests. E.g. count comparison (e.g. Bale and Barner 2002):

Assume that on the farm there are 20 cows outside and 1000 chickens inside. The cows yield 5000 kg of meat, the chickens yield 400 kg of meat.
(2) a. Most farm animals are inside in summer.
TRUE
b. Most livestock is inside in summer.
TRUE
c. Most meat comes from animals that are inside in summer. FALSE

Plural count noun phrase farm animals in (2a) has only a count comparison reading (cardinality).
Mess mass noun meat in (2c) has only a measure comparison reading (weight).
Neat mass noun livestock in (2b) prominently has a count comparison reading.
But neat mass nouns allow both count comparison and measure comparison. Rothstein 2017:
(3) a. Why did Mary come home later from the post office than Jane?

Mary had more mail to bring home. She had to fill out a separate form for each letter. COUNT
b. Why did Jane take a taxi to come home, while Mary didn't?

Jane had more mail to bring home. She had three bulky and heavy parcels. MEASURE
Landman 2020: languages like Dutch and German allow count comparison readings to be triggered contextually even for mess mass nouns like meat. Examples in Landman 2020.

Rothstein 2017 is well aware of these cases. But she adopts the COUNT constraint:
Counting is putting individual entities into one-one correspondence with the natural numbers, while measuring is assigning a measure value to a quantity on a dimensional scale independent of the internal structure of that quantity. [p. 106] In the count domain, quantity comparisons are always in terms of cardinality, since the semantically encoded atomic structure of the predicate makes this the only parameter for evaluation available. [p. 141-142]
[49] a. Counting is a an operation on count noun denotations.
b. Measuring is an operation on mass noun denotations. [p. 142-143]

So how can we do count-comparison in the mass domain in Rothstein's theory?
Rothstein's answer [reformulated in terms of measure functions]: She assumes:
\triangleright ADD: The measure functions that are relevant in the mass domain are additive
measure functions. [Krifka 1989]
Let AT_{w} be a set of atoms in a contextually given Boolean structure.
Since AT_{w} is disjoint relative to the relevant Boolean order, it is easy to show that:
$\lambda \mathrm{W} . \boldsymbol{c a r d}_{\mathrm{AT}_{\mathrm{w}}}$ is an additive measure function.

Rothstein's argument: $\lambda \mathrm{w} . \operatorname{card}_{\mathrm{AT}_{\mathrm{w}}}$ is an additive measure function, on a contextually salient atomic concept AT.
Hence it is available in the mass domain.
Hence it need not be a surprise if languages allow it to be made available for mass nouns in contexts where AT has been made sufficiently salient, like neat mass nouns.
Rothstein's claim: This use of $\lambda \mathrm{w} . \operatorname{card}_{\mathrm{AT}_{\mathrm{w}}}$ in the mass domain is not counting:
We don't $[$ need $]$ to use these scales $\left[=\lambda \mathrm{w} . \operatorname{card}_{\mathrm{AT}_{\mathrm{w}}}\right]$ to compare cardinalities, and in fact counting is a way of not doing so. If we compare how many cats John and Mary each have by counting, and we count to ten in the first case and seven in the second case, then we know that Mary has more cats, because we know that ten is more than seven. [p. 137]

Criticism:

If we compare how many cats John and Mary each have, we have to count how many cats John has and we have to count how many cats Mary has. In order to count how many cats John has we have to determine two things:
\triangle ONE: Determine what counts as one for CATS: this is set CAT ${ }_{w}$
\triangle DISJOINT: Make sure that the relevant context is one where the set $\mathrm{CAT}_{\mathrm{w}}$ of things that count as one is disjoint in the way that is relevant for counting.

Given these two conditions, objects in $* \mathrm{CAT}_{\mathrm{w}}$, the closure under sum of $\mathrm{CAT}_{\mathrm{w}}$, are 'put in oneone correspondence with the natural numbers' by the cardinality function $\lambda \mathrm{w} . \operatorname{card}_{\mathrm{CAT}_{\mathrm{w}}}$.

My conclusion:

The idea that matching pluralities with the natural numbers is something different from applying the function $\lambda \mathrm{w} . \mathrm{CARD}_{\mathrm{CAT}_{\mathrm{w}}}$ is misleading.

Better linguistics assumption:

Count nouns are nouns for which function $\lambda \mathrm{w} . \operatorname{card}_{\mathrm{N}_{\mathrm{w}}}$ is semantically available.
This function can be made available relative to a contextually salient set for mass nouns in different ways.
Hence: I reject assumption COUNT.

2. MEASURING

\triangle MEAS: Measuring takes place in the mass domain, but not in the count domain.

Rothstein's first argument: plural count complements of nominal measures

Observation 1: Nominal measures are intersective
(4) Ten kilos of flour $=\lambda \mathrm{x} . \mathrm{FLOUR}_{\mathrm{w}}(\mathrm{x}) \wedge \operatorname{kilo}_{\mathrm{w}}(\mathrm{x})=10=$ Flour to the amount of 10 kilos is flour

Observation 2: Measure phrases pattern with mass nouns:
(5) I haven't read \checkmark much/\#many of the twenty kilos of books that we sent.

Rothstein: Observations 1 and 2 show that books in twenty kilos of books must shift to mass, because $\lambda \mathrm{x}$. $\mathrm{BOOK}_{\mathrm{w}}(\mathrm{x}) \wedge \mathbf{k i l o}_{\mathrm{w}}(\mathrm{x})=20$ books to the amount of 20 kilo is books, hence count.
Conclusion: Measures operate in the mass domain, not in the count domain.

Criticism: Landman 2020 accepts observation 2, but argues that observation 1 is irrelevant. Landman 2020: it is not the interpretation of the expression flour/potatoes in (4/5) that determines the mass/count nature of the measure phrase, but the interpretation of the head of the measure phrase, i.e. kilo, and this head is mass.

Iceberg semantics background

$\triangleright \operatorname{An} i$-set is a set $X=\langle\boldsymbol{\operatorname { b o d y }}(X), \operatorname{base}(X)\rangle$ with $\operatorname{body}(X), \operatorname{base}(X) \subseteq \mathrm{B}$ and $\sqcup(\operatorname{body}(X))=ப(\operatorname{base}(X))$ and $\operatorname{body}(X) \subseteq$ *base (X)
X is count iff base (X) is disjoint, otherwise X is mass.
X is neat iff base (X) is atomistic and ATOMbase (X) is disjoint, otherwise X is mess.
[see Landman 2020 for the real definitions taking null i-sets into account]
\triangle Intensions are functions from worlds to i-sets
Intension f is count iff for every $\mathrm{w} \in \mathrm{W}$: f_{w} is count
Intension f is neat iff for every $\mathrm{w} \in \mathrm{W}$: f_{w} is neat
Intension f is mess iff for every $\mathrm{w} \in \mathrm{W}$: f_{w} is mess
Intension f is mass iff f is not count
Compositional theory of mass/count/neat/mess in terms of bases of noun phrase
interpretation:
\triangleright Head Principle: the base of the interpretation of a complex NP is
the set of all parts of the body of the interpretation of that NP
intersected with the base of the interpretation of the head of that NP.

Iceberg Semantics: interpretations of noun phrases are icebergs, pairs of sets consisting of -a body, which is the interpretation familiar from Boolean semantics for plurals and mass nouns. -a base, which is a set that generates the body under sum.
-The mass-count nature of the noun phrase is determined by the base:
if the base is a (contextually) disjoint set, the interpretation is count, otherwise mass.
Plural count noun potatoes \rightarrow <*POTATO w, POTATO $_{w}>$
The base is disjoint set POTATO_{w}, the set of potatoes that count as one. This i-set is count.
Let in context w all our poultry consist of turkeys:
Neat mass noun poultry $\rightarrow<*$ TURKEY $_{w}$, *TURKEY ${ }_{w}>$
The base is the closure under sum of disjoint set TURKEY ${ }_{w}$ This set is not disjoint.
The i -set is mass.
Landman 2020: Semantics of nominal measure kilo: (ignoring fine details)
Body: measure function kilow
Base: $\lambda \mathrm{x} . \boldsymbol{k i l o}_{\mathrm{w}}(\mathrm{x}) \leq \boldsymbol{m i n}_{\text {kilo, }}$
The set of objects in the domain whose weight in kilos is less than a small contextual value.
The compositional semantics derives for ten kilos of potatoes:
Body: potatoes to the amount of 10 kilos
Base: The set of arbitrary parts of the sum of potatoes weighing less than the contextual value.
Fact: this base is not disjoint. hence this i-set is mass, despite the intersective body-semantics.

Rothstein's second argument: count/measure comparison for plural nouns

The second argument is the observation that plural count nouns only allow count comparison, not measure comparison.
(6) Most cats are white.

Suppose we have two black cats, Shunra and Pim, that are enormous, their combined weight is much more than the combined weight of our three little white cats, Emma, Bruno and Sasha.
(6) obviously has a count comparison reading on which it is true,
and equally obviously (6) lacks a measure comparison reading on which it is false: the weight of the cats is irrelevant for the truth conditions of (6)

Rothstein: cats is a plural count noun, whose interpretation is in the count domain, COUNT says that card is defined there, MEAS says that measures are undefined there.

Puzzle: Nothing in the semantic structures of the mass domain and the count domain makes you expect this: they have similar Boolean structures and there is, of course, no problem with defining additive measures on atomic Boolean algebras.
In fact, given the parallels between mass nouns and plural count nouns that have been stressed in the semantic literature since Link 1983, the lack of measure readings is rather baffling.

MEAS is a not particularly insightful stipulation. Can we do better?

TWO RED HERRINGS

Grammatical account 1: Rothstein 2017
The lexical semantics of count nouns makes card lexically available (even as a null-classifier). Since this one is lexically available, the grammar determines that this is the one that must be picked in comparison.

Criticism:

Reasonable: lexical availability makes card a measure comparison can pick.
Not clearly reasonable: this is the measure that measure comparison must pick.
Many things that are lexically available can be skipped over when the semantics is compatible.
Grammatical account 2: Discussed in Rothstein 2017
For several grammatical concepts only one can be grammatically specified at a time on a single head. (e.g. thematic roles)
If card is a measure that is lexically specified on count nouns, and there is a requirement of only one measure, then that explains the lack of measure comparison readings for plural count nouns.

However, this general principle does not seem to exist.
(7) The magic will only work at the right concentration, when volume and weight are in balance. That is, that is, the bottle must contain 50 ml and 20 grams of polyjuice potion.

Here two different measures associate felicitously with the same head.

3. MEASURE COMPARISON

(8) a. Most cats purr.
b. Most mud is brown.

In (8a), the interpretation of most in world w combines with the iceberg intension of cats and the intension of purr:

CATS $=\lambda w .{ }^{*}$ CATw, CAT $\left._{w}>\right)$
PURR $=\lambda w \cdot$ PURR $_{w}$
On the (standard) reading of most I will use as an example here it compares in w :

$$
\begin{array}{ll}
\left.\sigma\left(* \mathrm{CAT}_{\mathrm{w}}\right) \sqcap \mathrm{U}\left(* \mathrm{CAT}_{\mathrm{w}} \cap \mathrm{PURR}_{\mathrm{w}}\right)\right) & \text { The sum of the cats that purr } \\
\left.\sigma\left(* \mathrm{CAT}_{\mathrm{w}}\right)-\mathrm{U}\left(* \mathrm{CAT}_{\mathrm{w}} \cap \mathrm{PURR}_{\mathrm{w}}\right)\right) & \text { The relative complement of that, }
\end{array}
$$

Hence, for iceberg intension f and property V : it compares:
Notation:
$[f+V]_{w} \quad \sigma\left(\operatorname{body}\left(f_{w}\right) \sqcap \quad \sqcup\left(\operatorname{body}\left(f_{w}\right) \cap V_{w}\right)\right)$ The sum of the parts of body $\left(f_{w}\right)$ that have V and
$[\mathrm{f}-\mathrm{V}]_{\mathrm{w}} \quad \sigma\left(\operatorname{body}\left(\mathrm{f}_{\mathrm{w}}\right)-\mathrm{L}\left(\boldsymbol{\operatorname { b o d y }}\left(\mathrm{f}_{\mathrm{w}}\right) \cap \mathrm{V}_{\mathrm{w}}\right)\right) \quad$ The relative complement of that sum.
I will now make a central grammatical assumption:

- Base-linked measures:

The comparison in the semantics of most involves a base-linked measure, a measure that is linked to the base of the interpretation of the complement noun: i.e. the comparison with most involves a function $\boldsymbol{\mu}$, with:
$\lambda w \lambda f . \mu_{\text {base }\left(f_{w}\right)}$
The theory introduced below will put restrictions on what functions can occur as base-linked measure functions.
This will (maybe not surprisingly) be exactly the class of measure functions that can be the interpretations of nominal measures, measures in nominal measure phrases (like kilo in three kilos of apples). So I propose:

- Nominal measures:

Nominal measures are measures that can be base-linked.
[Note: The fact that the measure can be base-linked in comparison does not mean that this feature is used in all its uses. In fact, as we have seen, it is not used in measure phrases: kilo in three kilos of apples is a nominal expression that has its own measure base.]

With this, the interpretation schema for the relevant interpretation of most is:
$\triangleright \quad \operatorname{most} \rightarrow \lambda_{\mathrm{w}} \lambda \mathrm{f} \lambda \mathrm{V} . \quad \boldsymbol{\mu}_{\text {base }\left(\mathrm{f}_{\mathrm{w}}\right)}\left([\mathrm{f}+\mathrm{V}]_{\mathrm{w}}\right)>\boldsymbol{\mu}_{\text {base }\left(\mathrm{f}_{\mathrm{w}}\right)}\left([\mathrm{f}-\mathrm{V}]_{\mathrm{w}}\right)$
The $\mu_{\text {base }\left(f_{w}\right)}$ measure value of $[f+V]_{w}$ is bigger than that of $[f-V]_{w}$
The measure value of F plus V is bigger than that of f minus V.

This unified schema for the semantics of most allows us to locate our problem:
We can now think about what $\lambda \mathrm{w} . \mu_{\text {base }\left(\mathrm{f}_{\mathrm{w}}\right)}$ can be:
Interpretation possibilities for $\lambda w . \mu_{\text {base }\left(f_{w}\right)}$:
$-\lambda w . \boldsymbol{c a r d}_{\text {base }\left(f_{w}\right)}$ Restriction: base $\left(f_{w}\right)$ is disjoint (i.e. f is count)
-Other count options, like :
$\lambda_{w . c a r d}^{\left.\text {ATOM }_{\text {base }}\left(f_{W}\right)\right)}$ Restriction: ATOM $\left._{\text {base }\left(f_{w}\right)}\right)$ is disjoint \quad (i.e. f is neat)
etc.
$-\mu$, where μ is a measure sortally appropriate for f
Restriction relative to base(f_{w}): to be found out below
We can reformulate our problem in terms of $\lambda \mathrm{w} . \boldsymbol{\mu}_{\text {base }\left(\mathrm{f}_{\mathrm{w}}\right)}$:
$\triangleright \quad$ What is it about the bases of count nouns that makes card the only available choice for μ in $\lambda w . \mu_{\text {base }\left(f_{w}\right)}$?

Since, card is an available measure, this question becomes:

- The fundamental question:

What is it about the bases of count nouns that make measures unavailable as choice for μ in $\lambda \mathrm{w} . \mu_{\text {base }\left(\mathrm{f}_{\mathrm{w}}\right)}$?

4. COMPOSITIONAL MEASURES

The analysis is based on two ideas: base-compositionality and base-corroboration.

4.1. BASE-ADDITIVITY

Base-compositionality is Iceberg semantics: Iceberg semantics gives a compositional theory of the notions mass, count, neat, mess in terms of the bases of interpretations:

Base: compositionality:

An NP-denotation is count if its base is disjoint, otherwise mass.
An NP-denotation is mess if its body is generated (under sum) by the set of minimal base-elements and that set is disjoint, otherwise mess.
Head Principle: The base of the denotation of a complex NP is the part-set of the body of its denotation intersected with the base of the denotation of its head.

I proposed above that the measure function is base-linked: $\lambda \mathrm{w} . \boldsymbol{\mu}_{\text {base }}\left(\mathrm{f}_{\mathrm{w}}\right)$
I propose now that this means that its relevant semantic properties of base-linked measures are base-compositional in the same way as the notions of mass/count/neat/mess.

- Base-determined measuring:

For every $d \in * \operatorname{base}\left(f_{w}\right)$: the measure value $\mu_{\text {base }\left(f_{w}\right)}(d)$ is determined by the measure values of parts of d in $\operatorname{base}\left(f_{w}\right)$.

The measure value of object d generated under sum by the base is determined by the measure values of parts of d in the base.

One can cook up intricate ways in which an arbitrary measure could satisfy this, but from a linguistic point of view where we are concerned with ordinary concepts there is really only one natural way in which this principle can be understood:

- Base-additivity of base-linked measuring:
f_{w} is base-additive for $\boldsymbol{\mu}$ iff
For every $\mathrm{d} \in * \operatorname{base}\left(\mathrm{f}_{\mathrm{w}}\right)$: there is a countable disjoint set $\mathrm{X} \subseteq\left(\mathrm{d} \mathbf{]} \cap \operatorname{base}\left(\mathrm{f}_{\mathrm{w}}\right)\right.$

$$
\text { such that } \mathrm{d}=\sqcup X \text { and } \boldsymbol{\mu}_{\text {base }\left(\mathrm{f}_{\mathrm{w}}\right)}(\mathrm{d})=\Sigma\left(\left\{\boldsymbol{\mu}_{\text {base }\left(\mathrm{f}_{\mathrm{w}}\right)}(\mathrm{x}): \mathrm{x} \in \mathrm{X}\right\}\right)
$$

The measure value of each object d generated under sum by the base can be calculated as the sum of the measure values of the elements of some countable disjoint set of base-parts of d.

We assumed above that nominal measures are base-linked.
We now assume that base-linking is defined (exactly how to be determined below) in terms of base-additivity.
We derive from this an obvious conclusion:

- Additivity:

Base-linking of nominal measures implies that nominal measures are additive.
This is Krifka 1989's observation.
(9) a. Nominal measure:

Ten kilos of apples $\quad \lambda \mathrm{x} . * \operatorname{APPLE}_{\mathrm{w}}(\mathrm{x}) \wedge \operatorname{kilo}_{\mathrm{w}}(\mathrm{x})=10$
Objects that are sums of apples and weigh ten kilos
$=\checkmark$ Apples to the amount of 10 kilos ADDITIVE
b. measure adjunct: $\quad \lambda \mathrm{x} . \mathrm{WATER}_{\mathrm{w}}(\mathrm{x}) \wedge{ }^{\circ} \mathrm{C}_{\mathrm{w}}(\mathrm{x})=60$

60 degree water Objects that are water and whose temperature is $60^{\circ} \mathrm{C}$
$=$ Water of sixty degrees NOT ADDITIVE
\neq Water to the amount of 60 degrees
Given the semantic similarities between mass nouns and plural count nouns, there isn't actually a real semantic difference between the denotation of ten kilos of apples and the denotation of 60 degree water, water of 60 degrees.

But this denotation is not a possible interpretation for the nominal measure \#60 degrees of water: nominal measures are only felicitous if you can reformulate that denotation as an additive amount statement.

4.2. BASE-CORROBORATION

The heart of the analysis concerns corroborations of measuring. My assumptions go in two steps:

1. Measuring requires corroboration.
2. Base-linked measures require corroboration to be base-linked.

How do you check that you got a measure value right? Well, of course, by calculating it again. But also, by corroborating it: by calculating the value in a different way. This, in fact, we do both for measuring and for counting.
-We have a liquid divided over different vessels, we calculate the volume of each and add up. To check, we may get a fixed volume vessel and check how many times this volume can be filled.
-Or for counting: we count all our pennies and get a number. Then we divide them into piles of ten and count those. This is what I call corroboration here:

Corroboration of additive measures:

1. Additive counting: Calculate the measure value of d by partitioning d into a countable disjoint set of parts of which you know the measure values and add up those values.
2. Corroboration: Calculate the measure value of d again by partitioning d into a different countable disjoint set of parts, add up those values, and check you get the same value.

I take corroboration to be an essential feature of measuring and calculating.
This proposal gets linguistic bite by assuming for base-linked measures
base-compositionality also for corroboration:

- Base-corroboration of base-linked measuring:
f_{w} is base-corroborative for μ iff
For every $\mathrm{d} \in$ *base $^{\left(\mathrm{f}_{\mathrm{w}}\right)}$ - ATOM $_{\text {base }\left(f_{\mathrm{w}}\right)}$:
there are two distinct countable disjoint sets $\mathrm{X}_{1}, \mathrm{X}_{2} \subseteq\left(\mathrm{~d} \mathbf{]} \cap \operatorname{base}\left(\mathrm{f}_{\mathrm{w}}\right)\right.$
such that $\mathrm{d}=\sqcup \mathrm{X}_{1}=\sqcup \mathrm{X}_{2}$

$$
\text { and } \left.\boldsymbol{\mu}_{\text {base }\left(\mathrm{f}_{\mathrm{w}}\right)}(\mathrm{d})=\Sigma\left(\left\{\boldsymbol{\mu}_{\text {base }\left(\mathrm{f}_{\mathrm{w}}\right)}\left(\mathrm{x}_{1}\right): \mathrm{x}_{1} \in \mathrm{X}_{1}\right\}\right)=\Sigma\left(\left\{\boldsymbol{\mu}_{\text {base }\left(\mathrm{f}_{\mathrm{w}}\right)}\right)\left(\mathrm{x}_{2}\right): \mathrm{x}_{2} \in \mathrm{X}_{2}\right\}\right)
$$

The measure value of each object d generated under sum by the base can be calculated as the sum of the measure values of the elements for two (sufficiently) distinct countable disjoint sets of base-parts of d .
(The exception are the base-atoms which, of course, in *base $\left(\mathrm{f}_{\mathrm{w}}\right)$ are only the sum of themselves.)
\triangleright Consequence: If f_{w} is count then f_{w} is not base-corroborative for any base-linked measure μ.
Reason: if f_{w} is count then base $\left(f_{w}\right)$ is disjoint and generates *base $\left(f_{w}\right)$ under \sqcup.
But then every element in *base $\left(\mathrm{f}_{\mathrm{w}}\right)$ is the sum of exactly one set of base elements and basecorroboration is not possible.

So this is promising: base-corroboration is not possible for the interpretations of count nouns. So it always possible for the interpretations of mass nouns?

4.3. CLOSE BUT NO SIGAR

The question is hard to answer in general.
In Landman 2020 I give suggestions for Iceberg semantic analyses of mass nouns along a scale of interpretations. I will indicate how well these suggested interpretations do.
(Answer: see the title of this section.)

1. Homogeneous mass nouns like time (mass denotations closed under parts)
-Model: complete atomless Boolean algebra of periods.
-Moments: Fix in context a partition of moments of time: intervals of some size r that in the context count as not further divided (see Landman 2020)
-base $\left(\right.$ time $\left.e_{\mathrm{w}}\right)$ is the set of all intervals of at most as small as moments.
This set is not disjoint, hence time $_{\mathrm{w}}$ is mass.
\triangle Fact: if $\mathrm{d} \in * \mathbf{b a s e}\left(\right.$ time $\left._{\mathrm{w}}\right)$ and $\boldsymbol{\mu}$ additive and some countable disjoint subset of base(time e_{w}) adds up to $\mu(\mathrm{d})$ then this partition can always be refined to a different base-partition.

Problem: It is not guaranteed that every element is the sum of a countable subset of elements of base $\left(\right.$ time $\left._{\mathrm{w}}\right)$ in the first place.
And there is no good reason to impose that on all mass noun denotations.
I deal with this problem in the proposal below.
So we will concentrate in the next cases on corroboration only. Base-corroboration, we see, is satisfied here.

2. Mass nouns with contextual 'smallest parts' like meat

-In context we set what is roughly the smallest size of pieces of meat that themselves count as meat. Say, what you can get with the finest cutting knife machine (allowing some variation in size). One cutting is a partition, but any similar partition (like moving the cutter a bit to the side over the meat) cuts into pieces that count as meat.
base $\left(\right.$ meat $\left._{\mathrm{w}}\right)$ is the union of all those partitions, which is not disjoint, hence meat ${ }_{\mathrm{w}}$ mass.
\triangle Fact: if $\mathrm{d} \in *$ base $\left(\right.$ meat $\left._{\mathrm{w}}\right)$ and $\boldsymbol{\mu}$ additive there are, by the construction many partitions in base $\left(\right.$ meat $\left._{\mathrm{w}}\right)$ that add up to $\boldsymbol{\mu}(\mathrm{d})$. So base-corroboration is satisfied.

3. Mass nouns with 'atoms' like water

-While in context we can think of water as being generated like meat from drops of water, I argue in Landman 2020 that even the 'scientific' view of water as $\mathrm{H}_{2} \mathrm{O}$ allows a mass perspective.
The idea for that is: our water puddle is not partitioned just into water molecules, but into water molecules and space (pairs of sums of water molecules and regions of space). We partition the space into regions containing exactly one water molecule, and we let base $\left(\right.$ water $\left._{\mathrm{w}}\right)$ be the union of those partitions. This set is not disjoint, hence water r_{w} is mass.

I discuss two models in Landman 2020:
Atomless: The base-elements consist of a water molecule and a region bigger than the eigenspace of that water molecule.
Atomic: The base-elements consist of a water molecule and a region bigger or equal to the eigenspace. (Here the molecules-eigenspace pairs are base atoms.)
Δ Fact 1: Base-corroboration holds for the atomless model:
If $\mathrm{d} \in$ * base (water $_{\mathrm{w}}$) and $\boldsymbol{\mu}$ additive and some countable disjoint subset of base(water $_{\mathrm{w}}$) adds up to $\mu(\mathrm{d})$ there are many partitions in base $\left(\right.$ water $\left._{\mathrm{w}}\right)$ that add up to $\boldsymbol{\mu}(\mathrm{d})$.
Base-corroboration is satisfied.
Δ Fact 2: Base-corroboration fails for the atomic model:
If base (water $_{\mathrm{w}}$) is atomic and $\mathrm{d}_{1}, \mathrm{~d}_{2}$ are water molecule-eigenspace pairs, then $\mathrm{d}_{1} \sqcup \mathrm{~d}_{2} \in * \operatorname{base}\left(\right.$ water $\left._{\mathrm{w}}\right)$ - base $\left(\right.$ water $\left._{\mathrm{w}}\right)$ and is uniquely the sum of d_{1} and d_{2}.
The atomic model doesn't quite satisfy base-corroboration.

4. Sum neutral neat mass nouns like poultry

I proposed that for these neat mass nouns the base is identical to its closure under sum. Say, if all the poultry is turkeys, then base poultry $_{\mathrm{w}}$) $=*$ TURKEY $_{\mathrm{w}}$. This set is not disjoint, hence poultry y_{w} is mass, but generated by a disjoint set (TURKEY ${ }_{\mathrm{w}}$), hence poultry ${ }_{\mathrm{w}}$ is neat. Here every element in base (poultry ${ }_{\mathrm{w}}$) - TURKEY ${ }_{\mathrm{w}}$ is the sum of base-elements in two different ways, namely as a sum of base-atoms (since that set generates the base), and as a sum of itself, hence:
Δ Fact: If $\mathrm{d} \in$ base(poultry ${ }_{\mathrm{w}}$) and $\boldsymbol{\mu}$ additive and besides d itself some countable disjoint subset of base(poultry y_{w}) adds up to $\mu(\mathrm{d})$ there are at least two distinct partitions in base(poultry ${ }_{\mathrm{w}}$) that add up to $\boldsymbol{\mu}(\mathrm{d})$.

For neat mass nouns with a finite set of base-atoms like poultry, this is of course satisfied. So base-corroboration is satisfied.

5. Group neutral neat mass nouns like pottery

These are aggregate nouns where a sum of base-atoms may also count as one. So in out shop base (pottery y_{w}) could be the items that are sold independently \{the bonbon-tray, the cup, the saucer, the teapot, the cup and saucer, the teaset \} Here base $\left(\right.$ pottery $_{\mathrm{w}}$) is not disjoint, hence pottery y_{w} is mass.
But base $\left(\right.$ pottery $\left._{\mathrm{w}}\right)$ is generated by the set of base atoms, hence pottery y_{w} is neat.
But here we see the same problem as what we saw for the atomic model for water: the bonbon-tray \sqcup the cup \in *base(pottery $_{\mathrm{w}}$), but it is not in base(pottery ${ }_{\mathrm{w}}$) and it is only in one way the sum of base-elements.
So base-corroboration is not satisfied here.

6. A general problem with neat mass nouns

Intension f is count iff for every $w: f_{w}$ is count, otherwise mass.
Intension f is neat mass iff for every w : f_{w} is neat and not for every w : f_{w} is count.
This means that neat mass intensions allow instances f_{w} where the denotation is count.
And it doesn't seem reasonable to forbid that possibility in context for neat mass nouns. That means that for this reason too base-corroboration is not guaranteed for neat mass nouns.

4.4. BASE-MEASURE FLEXIBILITY

The relevant difference between mass noun phrases and count noun phrases is not a question of extension (f_{w}) but of intension $\left(\lambda w \cdot f_{w}\right)$. The difference at the intension level is flexibility:

A \quad Base-inflexibility

The bases of count noun intensions cannot be stretched.
-Count noun phrases with a conceptually disjoint base, like penny.
Base of count noun pennies: single pennies, not groups of pennies.
-You stay within the meaning of penny if you add more pennies to the base.
-You do not stay within the meaning of penny if you add groups of pennies to the base.
-Count noun phrases with a contextually disjoint base, like portions of soup six portions of soup partitions the soup in context into disjoint portions.
-We can change the context and count the same soup as twelve portions of soup, then we partition into twelve disjoint portions.
-We do not stay within the meaning of portion of soup if we take as base the union of the six portions of soup and the twelve portions of soup.
i.e. You can only stretch in context the base by adding more soup and portioning it, not by counting more of what there is as portion of soup (the same for nouns like fence).

B \quad Base-flexibility

The bases of mass noun intensions can be stretched.
As we have seen, a mass noun denotation may not satisfy base-additivity or basecorroboration.
But the bases for mass noun intensions are contextually flexible:
You can always let the context stretch such a base to a base that does satisfy base-additivity and base-corroboration and stay within the intension of the mass noun.

- Base-stretching
v stretches the $\boldsymbol{\operatorname { b a s e }}\left(\mathrm{f}_{\mathrm{w}}\right), \mathrm{v} \sim_{\mathrm{f}} \mathrm{w}$ iff v at most differs from w in that $\boldsymbol{\operatorname { b a s e }}\left(\mathrm{f}_{\mathrm{w}}\right) \subseteq \boldsymbol{\operatorname { b a s e }}\left(\mathrm{f}_{\mathrm{v}}\right)$
In particular, this means that: $* \operatorname{base}\left(\mathrm{f}_{\mathrm{w}}\right)=* \operatorname{base}\left(\mathrm{f}_{\mathrm{v}}\right)$ and $\operatorname{bod} \mathbf{y}\left(\mathrm{f}_{\mathrm{w}}\right)=\operatorname{body}\left(\mathrm{f}_{\mathrm{v}}\right)$
So if $w \sim_{f} v$ the only difference between w and v is that base $\left(f_{v}\right)$ may extend more into * $\boldsymbol{b a s e}\left(f_{\mathrm{w}}\right)\left(=\right.$ *base $\left.\left(\mathrm{f}_{\mathrm{v}}\right)\right)$ than $\boldsymbol{\operatorname { b a s e }}\left(\mathrm{f}_{\mathrm{w}}\right)$ does.

- Base-measure flexibility

Let f be an intension and $\boldsymbol{\mu}$ a base-linked measure.
f is $\boldsymbol{\mu}$-base measure flexible iff for every $\mathrm{w} \in \operatorname{dom}(\mathrm{f})$: there is a $\mathrm{v} \in \boldsymbol{\operatorname { d o m }}(\mathrm{f})$:
$\mathrm{w} \sim \mathrm{f}$ and f_{v} is base-corroborative for μ
For world w for which f is defined, f_{w} may be not base-corroborative, but there always is a world v where f is defined and f_{v} is base-corroborative, and v at most differs from w in that $\operatorname{base}\left(f_{v}\right)$ stretches $\operatorname{base}\left(f_{w}\right)$ inside *base $\left(f_{w}\right)$.

1. Base additivity

time: base-corroboration was not the problem, but base-additivity was.
There may be elements in *base $\left(\right.$ time $_{\mathrm{w}}$) that are only the sum of continuous many moments, not countably many.

But obviously we can divide time into a less refined countable partition of moments without leaping out of the meaning of mass noun time.
This makes mass intension $\lambda \mathrm{w}$.time e_{w} base-measure flexible with respect to additive measure duration.
This holds generally for mass nouns and what is at stake is cumulativity and flexibility of base. Count nouns like penny are not cumulative: a pile of pennies is not itself a penny.

Plural nouns and mass nouns are cumulative: a groups of turkeys is poultry, and an aggregate of pottery is pottery, bigger stretches of time are time.

But plural nouns like pennies have the same base as their corresponding singular noun penny. What mass nouns have is what plural nouns lack: base-flexibility: the bases of mass nouns can be stretched if the context so wants it.
This means that stretching the base up to allow for a countable partition of the top element in terms of base elements is contextually possible.

2. Base-corroboration

Exactly the same argument applies to the other case, like that where a sum of two pottery items was only in one way the sum of two base elements.
We can liberalize our policy about what we are willing to sell as one item: if you want me to sell you a bonbon-tray-plus-cup, sure I'll make that an item that I sell and for a good price, I have no pride (my God, I sell it even the pattern clashes violently, what the hell...)

Conclusion:

1. All the mass nouns and noun phrases that I studied in Landman 2020 have intensions that are arguably base measure flexible with respect to appropriate measures.
2. Count nouns never have intensions that are base measure flexible with respect to any appropriate measure.

5. THE PROPOSAL

- The proposal:

1. Only measures that can be base-linked can be nominal measures.
2. Comparison in the semantics of most requires a base-linked measure.
3. base-linked card is defined in terms of base-disjointness, but can generalize to linking to contextually salient disjoint sets when the base is not disjoint.
4. base linked measures, besides card, are measures that noun intensions can be base-measure flexible on.

Interpretation possibilities for $\lambda \mathrm{w} . \mu_{\text {base }\left(\mathrm{f}_{\mathrm{w}}\right)}$:

- count options: as above
- μ, where μ is a measure sortally appropriate for f

Restriction: f is $\boldsymbol{\mu}$-base measure flexible

- Conclusions:

Landman 2020:

1. Comparison in $\operatorname{most}[\mathrm{N}, \mathrm{V}]$ can be in terms of card for plural count nouns.
2. Comparison in $\operatorname{most}[\mathrm{N}, \mathrm{V}]$ is not possible for singular count nouns independently because of the semantics of most: hence their interpretation downshifts to mass (as in: most hippopotamus is eaten in Afrika).
3. Comparison in $\operatorname{most}[\mathrm{N}, \mathrm{V}]$ can be in terms of card relative to salient disjoint sets for neat mass nouns N or even for some mess mass nouns in Dutch and German.
In this talk we derive
4. Nominal measures are additive.
5. Comparison in $\operatorname{most}[\mathrm{N}, \mathrm{V}]$ can not be in terms of measures for plural count nouns, because plural count noun intensions are not base-measure flexible with respect to
any sortally appropriate measure.

REFERENCES

Bale, Alan and David Barner, 2009, ' The interpretation of functional heads: using comparatives to explore the mass/count distinction,' in: Journal of Semantics 26, pp. 217-252.
Krifka, Manfred, 1989, 'Nominal reference, temporal constitution and quantification in event semantics,' in: Renate Bartsch, Johan van Benthem and Peter van Emde Boas (eds.) Semantics and Contextuel Expression, pp. 75-115, Foris, Dordrecht.
Krifka, Manfred, 1995, 'Common nouns: a contrastive analysis of English and Chinese,' in: Gregory Carlson and Jeffrey Pelletier (eds.), The Generic Book, pp. 398-411, Chicago University Press, Chicago.
Landman, Fred, 1991, Structures for Semantics, Springer [Kluwer], Berlin.
Landman, Fred, 2020, Iceberg Semantics for Mass Nouns and Count Nouns, Springer, Berlin.
Link, Godehard, 1983, 'The logical analysis of plurals and mass terms: a lattice-theoretic approach,' in: Rainer Bäuerle, Urs Egli and Arnim von Stechow (eds.), Meaning, Use and the Interpretation of Language, pp. 303-323, de Gruyter, Berlin.
Rothstein, Susan, 2017, Semantics for Counting and Measuring, Cambridge University Press, Cambridge.

